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Pattern formation in reaction diffusion systems: a Galerkin model
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Abstract. Reaction diffusion systems are extremely useful for studying pattern formation in biological
systems. We carry out a Lorenz like few mode truncation of a reaction diffusion system and show that it
not only gives the same qualitative behaviour as the more complicated systems but also indicates of the
existence of a Hopf-bifurcation in the turing region.

PACS. 87.10.+e General theory and mathematical aspects – 47.70.Fw Chemically reactive flows

1 Introduction

It was first suggested by Turing that interaction of two
substances A and B with differing diffusivities can cause
pattern formation. The two important features in pattern
formation are local self enhancement and long range in-
hibition. Self enhancement amplifies small local inhomo-
geneities. If a small increase of A beyond its homogeneous
steady state value causes further increase of A then A is
self enhancing. However self enhancement alone can not
produce stable pattern. For a stable pattern an overall in-
crease of A due to the positive feedback has to be checked.
This is done by having a fast diffusing antagonist B which
prevents the spread of the self enhancing reaction. A host
of different kinds of reaction-diffusion pattern generation
and transition between these patterned states are being
given attention to these days [1,2]. The two species A and
B constitute a reaction diffusion system. A much studied
model [3] is

∂A

∂t
= D∇2A+

A2

B
−A+ σ (1)

∂B

∂t
= ∇2B + µ(A2 −B) (2)

where σ is the rate of production of species A and µ is the
rate of removal of B through interaction. The diffusivity
D is much smaller than unity.

The general procedure for studying such systems has
been a linear stability analysis on the basic homogeneous
steady state followed by numerical integration. The phase
diagram obtained in this fashion is shown in Figure 1.
The boundary marked ‘1’ separates a steady homogeneous
state from a steady patterned state while the boundary
marked ‘2’ separates the homogeneous steady state from a
homogeneous time periodic state. These boundaries come
from a linear stability analysis. Numerical analysis gives
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Fig. 1. Phase diagram that comes from the linear stability
analysis of equations (1) and (2). The boundary marked ‘1’
and that marked ‘3’ encloses a steady patterned state, the
boundary ‘1’ separates the steady patterned state from steady
homogeneous state and the boundary ‘2’ separates the steady
homogeneous state from an oscillatory homogeneous state.

the region marked ‘3’ where one has a time dependent pat-
terned state. Analytic treatment of the nonlinear states
has not been done as yet. Our emphasis here has been on
showing the very crucial Hopf bifurcation over a Turing re-
gion. This Hopf-Turing [4] mixed mode region is of much
importance because of the phase instability that subse-
quently developed to render the system chaotic, charac-
terised by a comparatively higher dimensional attractor
[5,6]. In a different field, where pattern formation [7] is
common – namely hydrodynamic instabilities – various
theoretical techniques have been used to analyse the non-
linear state. These can be generally classified into two
categories a) amplitude equation [8] and b) Galerkin mod-
els [9]. The latter involves replacing the partial differential
equation by a few judiciously chosen ordinary differen-
tial equations and led to the study of Lorenz model [10]
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which had a strong impact on the field of nonlinear dy-
namics. In this paper our aim will be to write a Lorenz
like model for the reaction diffusion system. Analysis of
the model along the standard lines, then shows a phase
diagram which is similar to the one shown in Figure 1.
Consequently, we believe that low order Galerkin models
can be a useful tool for discussing pattern formation in
reaction diffusion systems. In Section 2, we discuss the
simplest situation namely the pattern formation in one-
dimensional systems. The success in one dimension leads
us to consider the two-dimensional situation in Section 3.
In this case, on the basis of a truncation, we actually pre-
dict that by varying a parameter, a transition can occur
between different patterns.

2 One-dimensional system

In setting up our Galerkin model, we would keep the num-
ber of modes at a minimum. For a dynamical system,
interesting behaviour obtains for dimension greater than
two [11]. Consequently, if a three mode truncation is done,
then it will be capable of exhibiting nontrivial dynamics.
This is precisely the lesson of Lorenz model. We expand

A(x, t) = A0(t) +A1(t) cos(kx)
B(x, t) = B0(t) +B1(t) cos(kx). (3)

The variable A is slowly diffusing which implies that
D � 1. The modes A0 and A1 decay with approximately
the same time constant if they were acting alone. For the
modes B0 and B1 on the other hand, B1 is a fast decaying
mode compared to B0, for small values of µ and not so
small value of k. In this situation, one can drop the mode
B1 and have a three mode truncation – the simplest situ-
ation which can lead to complicated behaviour. It should
be noted that the wave number k is a constant parame-
ter with above truncation. Matching Fourier coefficients
on either side of equations (1) and (2) with the modes of
equation (3) we have

Ȧ0 = −A0 +
A2

0

B0
+

A2
1

2B0
+ σ

Ȧ1 = −(1 +Dk2)A1 +
2A0A1

B0

Ḃ0 = −µB0 + µA2
0 + µ

A2
1

2
· (4)

We now need to look at the fixed points: 1) A1 = 0, A2
0 =

B0, A0 = 1 +σ. This is the steady homogeneous phase, 2)
A0 = 1+σ,B0 = 2 1+σ

1+Dk2 , A
2
1

2 =
[

2
1+Dk2 − (1 + σ)

]
(1+σ).

This fixed point exists for 1−Dk2

1+Dk2 > σ and corresponds to
a steady patterned state. These are the two basic states
in the system, captured correctly by the truncated sys-
tem. We first look at the stability analysis of the steady

homogeneous state

δȦ0 = −δA0

(
1− 2A0

B0

)
− δB0

(1 + σ)2

δḂ0 = −µδB0 + 2µA0δA0

δȦ1 =
(
−[1 +Dk2] +

2
1 + σ

)
δA1. (5)

Instability in the independent subspace of A1 correspond-
ing to the zero relaxation rate sets in for 1−Dk2

1+Dk2 > σ, which
is the same as for the existence of A2

1. Since the above con-
dition for instability can be rewritten as Dk2 < 1−σ

1+σ , we
will henceforth treat the wave number as one of the con-
stant parameters along with the reaction rate µ. We now
look for possible Hopf bifurcation of the basic steady state.
For this we need to keep Dk2 > 1−σ

1+σ , so that the mode A1

is a decaying mode and we look for the relaxation rate p
of the fluctuations δA0 and δB0. Clearly the growth rate
p can be found from

p2 + p

[
1 + µ− 2

1 + σ

]
+ µ = 0. (6)

The roots are complex if 2
1+σ > (1−√µ)2, an inequality

which is satisfied for σ < 1 and µ < 1. The real part of p
vanishes if

µ = µc =
1− σ
1 + σ

(7)

and fluctuations grow if µ < µc. In the µ−Dk2 plane, the
instability boundary has the structure shown in Figure 2a.

The phase boundaries shown in Figure 1 are qualita-
tively the same as that found. Having established the cred-
ibility of the truncated model, we now explore the stability
of the patterned steady state against a Hopf bifurcation.
This is what is achievable easily in the truncated model,
but difficult to sort out in the full differential equation. To
do this we write A0 = 1 +σ+ δÃ0, B0 = 2(1+σ)

1+Dk2 + δB̃0 and

A1 = Ã1 + δÃ1, where Ã1 = 2
√(

1
1+Dk2 − 1+σ

2

)
(1 + σ).

Linearising the equation of motions for δÃ0, δÃ1 and
δB̃0 in equation (4), we get

δ ˙̃A0 = Dk2δÃ0 − δB̃0
1 +Dk2

2(1 + σ)
+
Ã1(1 +Dk2)

2(1 + σ)
δA1

δ ˙̃B0 = −µδB̃0 + 2µ(1 + σ)δÃ0 + µÃ1δÃ1

δ ˙̃A1 =
Ã1(1 +Dk2)

1 + σ
δÃ0 −

Ã1(1 +Dk2)2

2(1 + σ)
δB̃0. (8)

The growth rate p now satisfies

p3 + p2(µ−Dk2)

+ p

(
µ+

µÃ1
2
(1 +Dk2)2

2(1 + σ)
− Ã1

2
(1 +Dk2)2

2(1 + σ)2

)

+
µÃ1

2
(1 +Dk2)2

2(1 + σ)
= 0. (9)
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Fig. 2. (a) Phase diagram that comes from the stability anal-
ysis of equation (5). The boundary ‘1’ is the zero instabil-
ity boundary, on the right hand side of which A1 exists. The
boundary ‘2’ is another instability boundary at µ = µc below
which the temporal instability grows. (b) The Hopf bifurca-
tion boundary obtained from equation (10) for σ = 0.5. In
the µ0-Dk2 plane the region below the graph there is a steady
patterned state and above it there is an oscillatory patterned
state.

A Hopf bifurcation occurs for µ = µ0 which for a particu-
lar σ is given by

µ0Ã1
2
(1 +Dk2)2

2(1 + σ)
=

(µ0 −Dk2)

(
µ0 +

µ0Ã1
2
(1 +Dk2)2

2(1 + σ)
− Ã1

2
(1 +Dk2)2

2(1 + σ)2

)
.

(10)

We show the boundary for σ = 1/2 in the µ−Dk2 plane
in Figure 2b. A numerical integration of the actual model

Fig. 3. (a) Time series for the activator concentration A ob-
tained by time integrating the actual model for Dk2 = 0.35,
µ = 0.5 and σ = 0.5. (b) Time series for the activator con-
centration A obtained by time integrating the actual model
for Dk2 = 0.35, µ = 0.9 and σ = 0.5. Here we see that the
patterned state is oscillating.

(Eq. (1) and Eq. (2)) for a range of Dk2 values and σ
values shows a Hopf bifurcation to occur at a µ > µ0. In
Figure 3a the time series shows the existence of a fixed
point at Dk2 = 0.35, µ = 0.5 (which is greater than µ0)
and σ = 0.5. Figure 3b shows the oscillating time series for
µ = 0.9 and Dk2, σ set at the same values as in Figure 3a.
Therefore it is clear from Figure 3b that a Hopf bifurcation
occurs at some µ value within 0.5 and 0.9.

For µ > µ0, we should have a patterned oscillatory
state, is also evident from the study of the nature of
the roots of equation (9). Now, is this limit cycle sta-
ble? The truncated system allows us an analytic han-
dling of this question as well. To see how this works we
write equation (4) in terms of shifted variables X , Y , Z
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defined as

A0 = 1 + σ +X

B0 =
2(1 + σ)
1 +Dk2

+ Y

A1 = Ã1 + Z. (11)

In terms of X , Y , Z, we can write equation (4) as

L

XY
Z

 =


2(1+σ)
1+Dk2

�
X2+Z2

2

�
−2(1+σ)XY−Ã1Y Z+Y 2

2(1+σ)
1+Dk2

h
2(1+σ)
1+Dk2 +Y

i

µ
(
X2 + Z2

2

)
(1+σ)
1+Dk2XZ−(1+σ)ZY −Ã1YX+

Ã1
2 (1+Dk2)Y 2

(1+σ)
1+Dk2

h
2(1+σ)
1+Dk2 +Y

i


(12)

where L is the linear operator

L =


∂
∂t −Dk2 1+Dk2

2(1+σ)
Ã1(1+Dk2)

2(1+σ)

−2µ(1 + σ) ∂
∂t + µ µÃ1

Ã1(1+Dk2)
(1+σ)

(1+Dk2)2

2(1+σ)
∂
∂t

 . (13)

For µ = µ0 (Eq. (10)), L has a eigenvector of the formX0

Y0

Z0

 exp(iωt). For µ ' µ0, we ask the question whether

a limit cycle solution of the form

X

Y

Z

 = A(T )

X0

Y0

Z0

 exp(iωt) (14)

where A(T ) is a slowly varying function, exists. With the
dynamics governed by equations (12) and (13), standard
techniques (multiple scale perturbation theory) leads to
an amplitude equation

dA
dt

= (µ0 − µ)A− f(µ0, Dk
2, σ)A3 (15)

where f(µ0, Dk
2, σ) is a complicated function which one

finds can be both of positive and negative values. For pos-
itive value of f , the limit cycle is stabilized, while for neg-
ative value of f , the state for µ < µ0, shows complicated
time dependence. This is entirely consistent with the find-
ings reported by Koch and Meinhardt. In conclusions we
have shown that the very complicated problem of pattern
formation can be profitably studied via a Galerkin trans-
formation and there is also a new result in the form of a
Hopf bifurcation in a region where linear stability analysis
predicts a steady patterned state. As in the field of hydro-
dynamic instabilities, this could be a very effective way of
studying pattern forming instabilities.

3 Two-dimensional system

Having noted that the severe truncation of the partial dif-
ferential equations governing the reaction diffusion system
in one dimension gives results in qualitative agreement
with the numerical integration, we carry this procedure
one step further and investigate the two-dimensional sys-
tem. This is far richer than the one-dimensional system
because of the variety of patterns that can be generated.
Can a truncated model capture all the patterns? The an-
swer is clearly negative. The goal of the truncated model
is certainly more restrictive. However if the class of pat-
terns can be narrowed down, then the truncated model
can come in very handy to capture the central features.
We will illustrate the solution by studying the possible
competition between a striped pattern and a rectangular
pattern.

It should be fairly obvious that the modes we choose
have two mirror subclass of patterns that we are inter-
ested in. For the specific class of patterns mentioned, the
choice of modes would be

A(x, t) = A0(t) +A1(t) cos(k1x) +A2 cos(k2y)
+A12 cos(k1x) cos(k2y)

B(x, t) = B0(t) +B12 cos(k1x) cos(k2y). (16)

For A1 = A2 = A12 = B12 = 0, we would have the homo-
geneous state. For A2 = A12 = B12 = 0, we would have
stripes in the x-direction, while A1 = A12 = B12 = 0,
would give stripes in the y-direction. For A1 = A2 = 0, we
would have a rectangular pattern. Thus for studying the
possibility of competition between stripes and rectangles,
we would need a 6-mode model. We insert the expansion
for A and B given in equations (1) and (2) in the
governing equations and equating the coefficients of the
same Fourier terms on either side, obtain

Ȧ0 = −A0 +
A2

0

B0
+

A2
1

2B0
+

A2
2

2B0
+
A2

12

4B0
− A0A12B12

2B2
0

σ

Ȧ1 = −(1 +Dk2)A1 +
2A0A1

B0

Ȧ2 = −(1 +Dk2)A2 +
2A0A2

B0
+
A12A1

B0
− A0A1B12

B2
0

˙A12 = −(1 + 2Dk2)A12 +
2A0A12

B0
+

2A1A2

B0
− A2

0B12

B2
0

Ḃ0 = −µB0 + µA2
0 + µ

A2
1

2
˙B12 = −(µ+ 2k2)B12 + 2µA1A2 + 2µA0A12. (17)

The stripe fixed point corresponds to either

A0 = 1 + σ

B0 = 2(1 + σ)/(1 +Dk2)

A2
1 = 2(B0 −A2

0) (18)
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and others zero, or
A0 = 1 + σ

B0 = 2(1 + σ)/(1 +Dk2)

A2
2 = 2(B0 −A2

0) (19)
with all other modes zero.

The square fixed point corresponds to A0 = A∗0,
A1 = A2 = A∗, A12 = A∗12, B0 = B∗0 and B12 = B∗12, with
the starred quantities satisfying

A∗0 =
(A∗0)2

(B∗0)2
+
A∗

B∗0
+

(A∗12)
(B∗0)

(A∗12 −
2A∗0B

∗
12

B∗0
) + σ

(1 +Dk2) =
2A∗0
B∗0

+
(A∗12)
(B∗0)

− A∗0B
∗
12

(B∗0 )2

(1 +Dk2 − 2A∗0
B∗0

)A∗12 =
2B∗0A

∗2 −A∗02B12

B∗0
2

B∗0 = A∗0 +A∗1 +
A∗12

2

4

B∗12 =
2µ(A∗2 +A∗0A

∗
12)

µ+ 2k2
· (20)

To answer the question whether the pattern is
striped or square, one imagine that a striped pattern
is formed (say along the x-direction) and ask if it is
stable against a square like perturbation. Consequently,
we consider the fixed point A0 = 1 + σ, B0 = 2(1+σ)

1+Dk2 ,
and A2

1 = (B0 − A2
0) and examine its stability against

perturbation by δA2, δA12 and δB12. Doing a linear
stability analysis, we obtain the system

δȦ2 =
A1

B0
δA12 −

A0A1

B2
0

δB12

δ ˙A12 = −Dk2δA12 +
2A1

B0
δA2 −

A2
0

B2
0

δB12

δ ˙B12 = −(µ+ 2k2)δB12 + 2µA1δA2 + 2µA0δA12. (21)

The growth rate ‘p’ satisfies the cubic

p3 + p2(Dk2 + 2k2 + µ)

+ p

[
Dk2(µ+ 2k2) +

2µA3
0

B2
0

+
2µσA1

2

B2
0

]
+

6µA2
1A

2
0

B3
0

+
2µDk2A0A

2
1

B2
0

− (µ+ 2k2)
2A2

1

B2
0

= 0. (22)

The cubic for ‘p’ has a zero root at k2 = kc
2 with

(2 − 5µ(1+σ)D
2 )kc

2 = µ1+3σ
2 for k2 > kc

2, the last term
in equation (22) is negative and the cubic has a posi-
tive root. Thus for wave numbers greater than a crit-
ical value, the striped pattern is unstable against the
square like perturbation, while for small wave numbers
the striped pattern is stable. In this two-dimensional sys-
tem we have also carried out a numerical integration of
the whole 8-mode truncated system consisting of modes
A0, A1, A2, A12, B0, B1, B2, B12, and the results as shown
in Figure 4 are in good qualitative agreement with ana-
lytic study the wave no on the instability boundary [3] is
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Fig. 4. (a) Stripped pattern state in the eight mode system
at parameter values as depicted in the figure. (b) Unphysical
square pattern fixed point in the eight mode system at param-
eter values as depicted in the figure. (c) Stripped pattern state
in the eight mode system at parameter values as depicted in
the figure. (d) Square pattern state in the eight mode system
at parameter values as depicted in the figure.
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(d)

Fig. 4. Continued.

determined by D and σ and thus we finally arrive at the
conclusion that parameter σ determines the pattern and
by tuning σ, we can observe a cross over from a striped to
a square pattern.

Conclusion

The Galerkin model, frequently used in handling with
hydrodynamic instabilities, turns out to be a very use-
ful and handy technique in reaction-diffusion systems too.
The first part of our analysis using Galerkin model shows
the existence of a temporal oscillation over the Turing
region. Existence of such a Hopf-Turing mixed state, be-
ing a precondition for the development of chaos via phase
instability, is worth studying. In the second part our anal-
ysis shows that a transition from stripe to square pattern.
This result has been arrived at by the effective use of three
modes only. Still the result is in good qualitative agree-
ment with the numerics done on 8-mode truncated sys-
tem. Here lies the advantage of using Galerkin model in
the analysis of reaction-diffusion systems at least for the
models having the nonlinear terms of the same symmetry
as that in Gierer-Meinhardt model [12].
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